Yearly Archives - 2024

Transferring real-time data stream processed by Apache Flink to Kafka to Druid for analysis

Businesses can react quickly and effectively to user behavior patterns by using real-time analytics. This allows them to take advantage of opportunities that might otherwise pass them by and prevent problems from getting worse. Apache Kafka, a popular event streaming platform, can be used for real-time ingestion of data/events generated from various sources across multiple verticals such as IoT, financial transactions, inventory, etc. This data can then be streamed into multiple downstream applications or engines for further processing and eventual...

Read more...
Kafka with Flink

Why Apache Kafka and Apache Flink work incredibly well together to boost real-time data analytics

When data is analyzed and processed in real-time, it can yield insights and actionable information either instantly or with very little delay from the time the data is collected. The capacity to collect, handle, and retain user-generated data in real-time is crucial for many applications in today’s data-driven environment. There are various ways to emphasize the significance of real-time data analytics like timely decision-making,  IoT and sensor data processing, enhanced customer experience, proactive problem resolution, fraud detection and security,...

Read more...

Integrating rate-limiting and backpressure strategies synergistically to handle and alleviate consumer lag in Apache Kafka

Apache Kafka stands as a robust distributed streaming platform. However, like any system, it is imperative to proficiently oversee and control latency for optimal performance. Kafka Consumer Lag refers to the variance between the most recent message within a Kafka topic and the message that has been processed by a consumer. This lag may arise when the consumer struggles to match the pace at which new messages are generated and appended to the topic. Consumer lag in Kafka may...

Read more...