Big Data

Transferring real-time data stream processed by Apache Flink to Kafka to Druid for analysis

Businesses can react quickly and effectively to user behavior patterns by using real-time analytics. This allows them to take advantage of opportunities that might otherwise pass them by and prevent problems from getting worse. Apache Kafka, a popular event streaming platform, can be used for real-time ingestion of data/events generated from various sources across multiple verticals such as IoT, financial transactions, inventory, etc. This data can then be streamed into multiple downstream applications or engines for further processing and eventual...

Read more...

Integrating rate-limiting and backpressure strategies synergistically to handle and alleviate consumer lag in Apache Kafka

Apache Kafka stands as a robust distributed streaming platform. However, like any system, it is imperative to proficiently oversee and control latency for optimal performance. Kafka Consumer Lag refers to the variance between the most recent message within a Kafka topic and the message that has been processed by a consumer. This lag may arise when the consumer struggles to match the pace at which new messages are generated and appended to the topic. Consumer lag in Kafka may...

Read more...
Druid Kafka Supervisor

Understanding Apache Druid Supervisor and its specification for real-time data ingestion from Apache Kafka

Although both Apache Druid and Apache Kafka are potent open-source data processing tools, they have diverse uses. While Druid is a high-performance, column-store, real-time analytical database, Kafka is a distributed platform for event streaming. However, they can work together in a typical data pipeline scenario where Kafka is used as a messaging system to ingest and store data/events, and Druid is used to perform real-time analytics on that data. In short, the indexing is the process of loading data in Druid...

Read more...